Philosophy 395 Computer Science 228 Symbolic Systems 210		Lecture 5 — Digital State Machines	Philosophy of Al Stanford University Winter Quarter, 1989–90
File path: Copyright:	Koyaanisqatsi : Philosophy of AI : Phai $-$ 5 $-$ Digital State Machines © 1990 Brian Cantwell Smith		
Last edited	Tuesday, February 20, 1990 — 6:37:47 PM		

[digitality is] ... a practical means to cope with the vagaries and vicissitudes, the noise and drift, of earthly existence.

• Intro

- a. Today: digitality
 - a. Informal!
- a. Specifically, claim: computer = digital state machine
 - a. Some immediate comments
 - a. Predicate on processes (cf. fsm)
 - a. non-intentional
 - a. Will get back even later today to the interaction between digitality and semantics.
- a. Right off
 - a. contrast with "analog".
 - a. But "analog" should be a predicate on representation.
 - a. NB: lewis's article: has to do with way in which things are implemented.
 - a. So: keep "analog" out as an opposite.
 - a. Stay with "digital" or "discrete".
- a. So: question is what it is to say of something that it is a digital.

• Preliminaries (Haugeland)

- a. Typically: digital system.
 - a. Reason: things aren't digital or not; rather, regularities; ways they are treated.
 - a. Puts paid the idea that whether digital or not is a matter of description. So is everything. Standard confusion (cf. Searle's epistemological vs. ontological).
- a. Idea: exact reproducibility, interchangeability, etc.
 - a. Cf. Haugeland: characteristic properties:
 - a. copyability: flawless copying
 - a. complexity: composite
 - a. medium-independence
 - $[\rightarrow$ resistance to buffeting]

- a. I think compositionality business is distracting, so set it aside (get back to it later)
- a. Point of Haugeland: better at properties digital systems have than at what the essence of digitality itself is.
- a. More literally:
 - a. set of types
 - b. set of feasible proecdures for reading and writing tokens of these types
 - c. specification of suitable operating conditions, such that
 - d. under these conditions, procedures for read-write cycle are positive and reliable
 - ⇒ But
 - a' Types is just standard ϕ of science
 - b' "reading" and "writing" are merely effective coupling
 - Cf. syntactic!
 - needs emphasis!
 - c' Yes, things happen in situ
 - d' So this is really it: **reliability**
- a. But:
 - a. Suppose a continuous (still intuitive) world, but in which things were exact!
 - a. Could meet his criteria!
 - a. So something odd going on

a. 1st conclusion: digitality is a way that the world sustains reliability.

- a. Think this is by far the most important fact.
- a. H defines digitality as reliability. Doesn't claim it. So leaves me hungry.

a. Discreteness

- a. Intro to Goodman
 - a. Project: arts, etc. (scores)
 - a. Metaphysical stripe: nominalist
- a. His approach: digitality
 - a. Doesn't use the term much (until a late section).
 - a. Talking intentional (will get back to that)
 - a. Has five criteria «put on board»
 - a. Syntactic (character indifference (reflexive, symmetric, & transitive)
 - i. **disjoint** (no token of more than one type)
 - ii. finite differentiation (can in principle determine which type it is of)
 - density destroys finite differentiation, but ¬dense doens't guarantee f.d.

- NB: these criteria apply to composite (compound) types, as well as atomic.
- b. Semantic
 - i. non-ambiguous (at the level of types)
 - ii. **disjoint** (no co-reference!)
 - these two together entail no redundancy
 - iii. finite differentiation
- a. Only first two immediately relevant.
- a. Disjointness
 - a. fundamentally: no "ambiguity" in the token-type relation
 - a. Explain
 - a. Us: talking at the level of properties anyway.
 - a. Does this mean it is irrelevant? Not necessarily; against a background
 - a. 2nd conclusion: digitality is defined against a (larger, threatening) background of possibility
- a. Finite differentiation
 - a. Separateness (discontinuity) a.
 - a. My reconstruction: in order for us to tell, has to be an effective route (via perception, measurement, etc.) into us, that keeps them separated.
 - a. G. claims: separateness is necessary but not sufficient (unary case).
 - a. But if they (reliably) did discriminable things, leading to a parting of the ways, would satisfy his criteria.
 - a. 3rd conclusion: need separationbecause otherwise uncontrollable influences will buffet it around.
- a. Furthermore, this separation needn't be metaphysical (cf. voltages in a machine). Cf. Haugeland's "operating conditions". Can be maintained.

a. Further topics

- a. Semantics
 - a. In an intentional system, can apply the same criteria to the semantic domain.
 - a. Note, however, that the effective separability isn't so clearly useful
 - since semantic connection isn't effective

- a. So some examples:
 - a. Fractions
 - a. The calculus
 - a. Second hand on the clock
- a. Continuity in computation
 - a. Semantics:
 - a. Some counter-examples
 - a. Real-values (so not notational systems) in G's sense.
 - a. Context-dependence
 - a. But these, strictly speaking, aren't the point.
 - a. Real question is whether machine is digital
 - a. Some examples of continuity
 - a. VSLI (Carver Mead)
 - a. Conclusion: notion of computation isn't inherently digital.
 - a. Rather: computation proved useful because it was reliable.
 - a. In cases where reliability doesn't matter (especially immediate cases), can go continuous!
 - a. So notion is important, but not constitutive.
 - a. More outré cases
 - a. Real indices
 - a. No theoretical problem.
 - a. But how to implement. Symbolically!
 - a. Does that mean the representation is at the level of abstraction (cf. data abstraction).
 - a. No!
 - a. Support for earliier conclusion
 - a. 4th conclusion: Current systems are digital because of reliability.
- a. Second-order digitality (indefiniteness)
 - a. Cf. H's second article
 - a. Continuous but precise ⇐ definite
 - a. Question: is it true that second-order digital is continuous?
 - a. Problem: notion of continuity is second-order digital!
 - a. ...
- a. \Rightarrow font change semantics, etc. Most exciting development in AI. Inarticulate, etc.

• General notes

- Compare and contrast Haugeland's & Goodman's notions of "digitality".
- Haugeland's "second order digital"
- Use "discrete" and "continuous" instead of "digital" and "analog"
- Differentiate "precise" and "indefinite", noting how latter is more like Haugeland's second-order digital. But where does that leave precise-continuous, on his reconstruction?
- Apply discrete to a representational system: can apply to any of:
 - syntactic domain
 - semantic domain
 - interpretation relation
- Talk about clocks?
- C&C: denseness vs. continuity (cf. Haugeland's claim that digital implies nondense more than non-continuous).
- Try to sort out Goodman's nominalism (i.e., epistemic vs. ontological discontinuity) ← at appropriate "level of analysis"
- NB: on common construals, neither mutually exclusive nor exhaustive.
- Note non-intentional nature of basic intuition (will come back next time to merge of digital and intentional characterisations)
- Make obvious point about how "analog" should be a predicate on representation (intentionality). So use "continuous" and "discrete".
- Get to: indefiniteness = second-order continuity? All the way up!
- Use examples of the calculus: syntactically discrete, semantically continuous.

• Specifically computational issues

- Effective computability
 - a) Can an "analog" computer compute something that a digital machine cannot (falsifying Turing's thesis)?
 - b) Can an "analog" computer compute something efficiently that a digital machine cannot (falsifying Turing's thesis)?
- Analog computers: spaghetti-sorting machine

• Possible exam questions

 Describe whether an "analog" clock is analog or digital (in the various terms used in class), with respect to both (effective) operations and (non-effective) interpretation (though of course the act of interpretation requires effective access to it). Discuss Dewdney's spaghetti-sorting machine, in terms of the various notions of digitality and continuity (developed in class? distinguished in the papers? formulated in the prior question?)

Notes on Readings

Notes on Goodman

- Fundamental notion is that of **definite differentiation**
 - can be absolutely discriminated, in spite of our inability to make indefinitely precise measurements.
- Analog (continuous) representation is dense.
- double requirement (of notational systems)
 - complete determinacy sign \Rightarrow symbol
 - complete determinacy symbol \Rightarrow sign
- distinguishes notational scheme from notational system
- distingiushing properties
 - a. Syntactic (character indifference (reflexive, symmetric, & transitive)
 - i. **disjoint** (no token of more than one type)
 - ii. finite differentiation (can in principle determine which type it is of)
 - density destroys finite differentiation, but ¬dense doens't guarantee f.d.
 - NB: these criteria apply to composite (compound) types, as well as atomic.
 - b. Semantic
 - i. non-ambiguous (at the level of types)
 - ii. **disjoint** (no co-reference!)
 - these two together entail no redundancy
 - iii. finite differentiation
- ⇒ Disjointness is kind of like non-ambiguity for the object-type relation, rather than for the syntactic-semantic type relation.
- \Rightarrow Differentiation is a pseudo-epistemic cast of the notion of digitality

Notes on Lewis's "Analog and Digital"

- Clearly has a different notion of analog than Goodman: has to do with the direct representation in virtue of a physical property.
 - X,Y,Z,W multiplier, and variable resistor (pot): both differentiated and nondense.
 - analog: representation of numbers by physical magnitudes
 - $[\Rightarrow$ neither continuous nor analogical (simulacrum)]
- ... unidigital magnitudes

- digital: differentiated multidigital magnitudes
- Notes on Haugeland
 - Digital
 - Characteristic properties:
 - copyability: flawless copying
 - complexity: composite
 - medium-independence
 - $[\Rightarrow$ resistance to buffeting]
 - Other
 - Goes on to talk about
 - reading & writing
 - tokens of various types
 - \Rightarrow These are both gratuitous:
 - "reading" and "writing" mean no more than that they participate in various effective actions.
 - token/type talk is merely because scientific regularities occur at the level of properties (a big notion)
 - positive procedures: somthing that can succeed (value-judgment!) with absolute, unqualified precision.
 - \Rightarrow Value–loaded characterisation
 - detail
 - Haugeland: digital device is:
 - a. set of types
 - b. set of feasible proecdures for reading and writing tokens of these types
 - c. specification fo suitable operating conditions, such that
 - d. under these conditions, procedures for read-write cycle are positive and reliable
 - \Rightarrow But
 - a' Types is just standard ϕ of science
 - b' "reading" and "writing" are merely effective coupling
 - c' Yes, things happen in situ
 - d'So this is really it
 - Conclusion is that Goodman has more to say that Haugeland.

Analog

- Characteristic properties
 - a. Smoothness continuity

- b. Sensitivity every difference makes a difference
- c. Dimensionality only certain "dimensions" of variation are relevant
- ⇒ Surely, what is discrete are the regularities, not the things, so this packs into a single claim of continuity.
 - Placing it on the regularity doesn't make it back into "analog", however since it is the effective regularities!
- Haugeland claims that his notion of **approximation** is better than Goodman's continuity (which requires a notion of between — inapplicable, e.g. to pictures).
 - \Rightarrow really mean something like invulnerability to small influences.
- H's "second order digital", he claims, is necessary for digital simulation. Not clear to me that these are related.

--end of file --